

HDY-003-1173003 Seat No. _____

M. Sc. (Statistics) (Sem. III) (CBCS) Examination

November / December - 2017

MS-303: Optimizing Techniques

Faculty Code: 003

Subject Code: 1173003

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) Attempt all questions.
- (2) Each question carries equal marks.
- 1 Answer the following: (any Seven)

14

- (i) Define Feasible Solution.
- (ii) Define Unbounded Solution.
- (iii) Name the types of variables added in LP problem to convert it into standard form. Define Two person game.
- (iv) Define Zero sum game.
- (v) Write limitation of Arithmetic Method for solution of 2×2 game.
- (vi) Give second name of Big-M Method.
- (vii) Name three methods to obtain an initial solution for Transportation Problem.
- (viii) When any Transportation problem is said to be Unbalanced?
- (ix) Define: Slack variable and Surplus Variable.
- 2 Answer the following: (any two)

14

- (1) Write a brief note on Simplex Method.
- (2) Explain mathematical formulation of LP problem.
- (3) Define following terms:
 - (i) Basic feasible solution
 - (ii) Unbounded solution
 - (iii) Surplus variable

- **3** Answer the following:
 - (1) Explain strategy in game theory.
 - (2) Solve the following LP problem using graphical method.

Max
$$Z = 6x_1 - 4x_2$$

s. to c $2x_1 + 4x_2 \le 4$
 $4x_1 + 8x_2 \le 16$ where $x_1, x_2 \ge 0$.

OR

- **3** Answer the following:
 - (1) Explain steps for PERT and CPM techniques.
 - (2) Solve given assignment problem using Hungarian method:

	I	II	III	IV
A	42	35	28	21
В	30	25	20	15
C	30	25	20	15
D	24	20	60	12

4 Answer the following : (any two)

14

14

14

- (1) Explain types of failure in Replacement problem.
- (2) Solve given LP problem using Big M method.

Min
$$Z = 600x_1 + 500x_2$$

s to c. $2x_1 + x_2 \ge 80$
 $x_1 + 2x_2 \ge 60$
 $x_1, x_2 \ge 0$.

(3) Find an optimal solution for given transportation problem:

	D_1	D_2	D_3	D_4	Supply
S_1	2	3	11	7	6
S_2	1	0	6	1	1
S_3	5	8	15	9	10
Demand	7	5	3	2	

5 Answer the following: (any two)

- 14
- (1) Explain M/M/1 : ∞/FIFO queuing model.
- (2) Explain EOQ model with no shortage.
- (3) A project is represented by given activity and task with original schedule time of a completing a project is 40.5 weeks:

Activity	1-2	1 – 3	1 – 4	2 – 5	2 – 6	3 – 6	4 – 7	5 – 7	6 – 7
Task	A	В	С	D	E	F	G	Н	I
Optimistic time	5	18	26	16	15	6	7	7	3
Pessimistic time	10	22	40	20	25	12	12	9	5
Most Likely time	8	20	33	18	20	9	10	8	4

Determine the following:

- 1. Expected task times and their variance.
- 2. The earliest and latest expected times to reach each event.
- 3. The critical path.
- (4) Define following terms:
 - (i) Lead time
 - (ii) Stock replenishment time
 - (iii) Planning horizon.